体结构:峰值显示良好外延,但电阻测试在液氮浴(77K)中,超导转变温度Tc只有50K,远低于预期。
第二个月:“我觉得应该是硒空位缺陷导致的费米面重构不完整,吴工,尝试一下增加后退火步骤,在真空下加热到400°C,促进界面电荷转移。”林燃提醒道“我觉得界面效应会是关键,SrTiO3的极性层会诱导二维电子气,提升Tc。”
这和2014年Nature的一篇文献有关,在那篇文献里有提到,FeSe/SrTiO3系统可以利用界面效应将Tc从8K推到100K以上。
团队迭代三次,调整硒/铁比从6:1到8:1,终于在第四个样品上看到进步:XRD显示锐利峰,表明完美晶格匹配。
第三个月,才开始初见曙光,使用高压氧掺杂,FeSe薄膜的晶格扭曲,a轴参数从3.76增加到3.78,电子-声子耦合增强。
在模拟观测中,显示Tc能达105K。
林燃说:“我知道大家很高兴,但这还不够,我们需要继续优化。
因为月球南极的辐射环境会干扰Cooper对,但低温能抑制热噪声。
我们需要集成辐射屏蔽层,用硼掺杂金刚石作为缓冲,BDD的Tc虽只有11K,但其宽带隙能阻挡宇宙射线。”
他们开始掺杂实验:在MBE腔内引入氧气束,压力控制在10^-6 Torr,掺杂水平0.1-0.2原子%。
测试使用四探针法测量电阻-温度曲线:在氦气制冷机下,从300K降温,电阻在110K附近骤降到零,磁化率测试确认Meissner效应,临界电流密度Jc达10^5 A/cm。
“教授,根据失败样品分析,STM显示氧团簇导致相分离。”吴工说。
林燃思考片刻后说道:“调整氧束能量可行吗?”
他们调整氧束能量从5eV到3eV来对均匀性进行优化调整。
第四个月,团队终于做出第二个样品:一个5cm见方的芯片,表面闪烁着金属光泽,集成BDD屏蔽层厚度2μm。
测试在液氮模拟下,电阻骤降到零,能够运行简单AI算法:芯片处理100x100矩阵乘法,效率比硅基高500%,且无热积累。
整个团队空前振奋,